Direct Manufacturing at ORNL

- Revolutionary manufacturing technologies in which feed material is added at specific locations to build netshaped components from computer models
- Numerous benefits over conventional processing techniques
 - Decrease Energy and Waste
 - Component Design Optimization
 - Create "Geometrically Impossible Designs"
 - Resurrect US Manufacturing

Direct Manufacturing at ORNL

 The Direct Manufacturing capabilities at ORNL encompasses a broad scope of direct manufacturing technologies including:

- **Electron Beam Deposition (Slide 3)**
- Laser Deposition (Slide 7)
- **Ultrasonic Additive Manufacturing (Slide 10)**
- **Gel Casting**
- Plasma Arc Lamp & IR Technologies
- **Polymer 3D Printing of Small Components**

M DMD 103D

Electron Beam Deposition:

- Electron beam used to melt a powder bed under vacuum
- Excellent compositional control with microstructural refinement showing increased mechanical properties
- Precise control of complex geometries
- Many applications including Aerospace, **Automotive, Biomedical**

Engine Part with Lattice Structure

Customized Trabecular CMF Implant

How Arcam Works: Computer Design

Deposit Individual Layers

Electron Beam Melting

Current Research:

- Build of Parts Impossible or Near to Impossible to Build
- Implementation of Low-Cost Ti feedstock materials
 - 10X decrease in material cost
 - HDH CP Ti: Grade 3,4 Strength, Grade 1,2 Elongation
- Development of new Alloy Systems
 - Manage Machineable TiAI: EBM can improve existing alloys

Direct Manufacturing Utilizing New and Conventional Titanium Powders

- Graded Materials, Composites, and Improved Structures for Enhanced Performance
- Advanced Robotics
 - Aluminum finger (65 grams, \$6500 to fabricate)
 - Titanium finger (61 grams, \$20 worth of material)
- Advanced Design Structures
- Fast Design Iteration

Laser Metal Deposition

- Laser Beam melting of a continuously fed powder stream
- Site specific compositional control for production of functionally graded components with optimized properties
- Ability to add material to large parts including turbine blade repairs, surface treatments of dies, punches, and bits for increased wear ability and thermal behavior

Laser Metal Deposition

- Computer controlled 5-axis motion
- Inert chamber for reactive materials
- Closed Loop feedback system for precision deposition
- 2 powder hoppers allow for Multimaterial Deposition:

Laser Deposition, Composites for Application

- Graded Materials
- Coatings or Rebuilds
- Powder Metallurgy Versus Additive Manufacturing

Embedded Particle Arrays

Continually Graded

Discrete Zone

Complex Pattern

Complex Interface

Layered Hybrid Composites

Hard Surface

Embedded Layer

Multi-layer

Complex Interface

Laser Deposition of Reactive Materials

Ultrasonic Additive Manufacturing

- Ultrasonic Energy is used to bond thin tapes or sheets of material into 3-dimensional components
- Combination of additive and subtractive techniques allows precise machining of components with complex geometries and intricate internal channels
- Low temperature processing allows the ability to incorporate sensitive materials such as fiber optics for sensors

Advantages of a Ultrasonic Additive-Subtractive Deposition

- Temperature Sensitive Materials
- Absent liquid-solid transformations
- Fast
- Lower energy consumption eco friendly
- Improved dimensional accuracy
- No atmosphere control requirements
- Well suited for joining of dissimilar metals

Ultrasonic Consolidation (Additive)

Ultrasonic energy transferred to material

Bond Stages

Asperity collapse
Partial oxide disruption
Localized softening and
adhesion

Key Parameters

Amplitude (15µm)
Sonotrode force (500N)
Rolling speed (3cm/s)
Sonotrode texture
Frequency (20 kHz)
Power (3 kW)

Ultrasonic Consolidation (Subtractive)

<u>Ultrasonic Consolidation</u> = Solid State Deposition + CNC Subtraction

True metallurgical bond 8 layers Al, 100x

Advanced Materials via Solid State or Ultrasonic Additive Manufacturing

Dissimilar UC Matrix Potential

Al Alloys

- Material pair tested for UC
- Process well suited to dissimilar metals and multi-material laminate
 - No liquid phase metallurgical incompatibilities
- Multiple metal foils can be combined
- Fiberoptic, B and SiC fibers can be embedded without deleterious reactions with Al matrix

UC Part Examples

